Preliminary Communication

Transfer of the (dithiomethyoxycarbonyl)diphenylphosphine ligand from tungsten to palladium: syntheses and crystal structures of two palladium (dithiomethoxycarbonyl)phosphine complexes

Kuang-Hway Yih, Ying-Chih Lin, Ming-Chu Cheng and Yu Wang

Department of Chemistry, National Taiwan University, Taipei, Taiwan 106 (Taiwan)

(Received December 22, 1993; in revised form January 26, 1994)

Abstract

The (dithiomethoxycarbonyl)phosphine transfer reaction between Pd(PPh₃)₄ and W(CO)₅[PPh₂(CS₂Me)], 1, forms {Pd(PPh₃)[μ , η^1 , η^2 -(MeS₂C)PPh₂]]₂, 3, as the final product. The reaction proceeds via a η^2 -coordination of the C=S fragment to Pd, giving (Pd(PPh₃)-[μ , η^1 , η^2 -(MeS₂C)PPh₂]W(CO)₅], 2 as an intermediate. Complexes 2 and 3 are characterized by X-ray diffraction analysis.

Key words: Palladium; Tungsten; Phosphine; X-ray diffraction

Transition metal CS₂ complexes have attracted considerable attention in recent years. The first preparation of such a complex was reported in 1967 [1]. CS_2 possesses versatile coordinating capabilities; i.e. it can be a monodentate [2] or a multidentate ligand [3]. Such coordinating ability can be employed in the study of chemical reactivities of the ligands containing CS_2 . The zwitterionic $R_3P^+CS_2^-$ ligand is a typical example. Metal complexes containing such a ligand have been extensively studied in recent years [4]. To date, however, little effort has been directed toward investigating the reactivity of the (dithioformato)phosphine ligand, $R_2 PCS_2^-$. An efficient method of synthesis of metal complexes with the (dithioalkoxycarbonyl)phosphine ligand Ph_2PCS_2R [5], recently developed by us, allows more extensive exploration of the chemistry of these complexes. This communication describes an intermolecular transfer of the (dithiomethoxycarbonyl)phosphine ligand from W to Pd via a prior coordination of C=S to the Pd. X-ray crystal structure determination of the two Pd complexes clarifies the transfer mechanism.

Treatment of W(CO)₅[PPh₂(CS₂Me)], 1 [6*], with $Pd(PPh_3)_4$ in ether affords a yellow crystalline product, identified as $\{Pd(PPh_3)_2[\mu,\eta^1,\eta^2-(MeS_2C)PPh_2]$ -W(CO)₅, 2, in 55% yield and a small amount of trans-W(CO)₄(PPh₃)₂. The spectroscopic $[7^*]$ and analytical data of 2 correlate with the formulation. The FAB mass spectrum of 2 shows a parent peak at m/e = 1231. The IR spectrum of 2 shows three terminal carbonyl stretches at 2060, 1914 and 1887 cm⁻¹; a typical pattern of a M(CO)₅L unit in octahedral geometry. The ¹H NMR spectrum of **2** exhibits a singlet at δ 2.09 assignable to the thiomethoxy protons and the corresponding ¹³C NMR signal is at δ 18.7. The ³¹P NMR spectrum of 2 exhibits a resonance at δ 51.6 with a tungsten satellite (${}^{1}J_{P-W} = 257$ Hz) assignable to the $PPh_2(CS_2Me)$ ligand on W and two more resonances at δ 22.2 and 22.4 assignable to the two inequivalent PPh₃ ligands. Results indicate an asymmetrical coordination of the C=S moiety of the $PPh_2(CS_2Me)$ ligand onto the Pd metal. This unusual bonding mode for the PPh₂-(CS₂Me) ligand is confirmed by an X-ray diffraction study $[8^*]$. The structure of 2 is shown in Fig. 1. It is clear that the palladium and tungsten metal centers are bridged by the PPh₂(CS₂Me) ligand with no metalmetal contact. The ligand is π -bonded through the C=S coordination to Pd and σ -bonded to W through the phosphorus atom.

At room temperature complex 2 is unstable and slowly undergoes disproportionation in CHCl₃ to form a complex {Pd(PPh₃)[μ , η^1 , η^2 -(MeS₂C)PPh₂]}₂, 3, in 31% isolated yield, and W(CO)₅PPh₃, in 40% yield, which are identified by spectroscopic methods including mass spectroscopy [9*]. The FAB mass spectrum of 3 shows a peak at m/e = 1242.8 which corresponds to a fragment formed from cleavage of the SMe group from 3. The ¹H NMR spectrum of 3 exhibits a singlet at δ 2.18 assignable to the thiomethoxy protons and the corresponding ¹³C NMR signal is at δ 19.7. The ³¹P NMR spectrum of 3 exhibit resonances at δ 22.4 and 53.7. Complex 3 is also identified on the basis of its

Correspondence to: Dr. Y.-C. Lin.

^{*} Reference number with asterisk indicates a note in the list of references.

Fig. 1. X-ray structure with atom numbering scheme for complex $\{(Ph_3P)_2Pd[\mu,\eta^1,\eta^2-(MeS_2C)PPh_2]W(CO)_5\}$, 2, the phenyl groups are omitted for clarity. Selected bond distances (Å) and angles (°) are as follows: Pd-P₁, 2.321(3); Pd-P₂, 2.360(3); Pd-C₆, 2.134(9); Pd-S₁, 2.273(3); C₆-S₁, 1.720(9); C₆-S₂, 1.793(9); C₇-S₂, 1.74(1); P₂-Pd-P₁, 105.8(1); S₁-Pd-C₆, 45.8(2); C₆-Pd-P₁, 110.1(2).

single crystal X-ray diffraction analysis [10^{*}]. The OR-TEP drawing of **3** is shown in Fig. 2. It is clear that the two Pd(PPh₃) fragments are held together by the two PPh₂(CS₂Me) ligands. The PPh₂(CS₂Me) ligand is π bonded to the Pd atom through the C=S and σ -bonded to the other Pd atom through the phosphorus atom; this gives a six-membered ring. The coordination around each Pd atom is distorted squared planar, mainly because of the short bite of angle the C=S linkage [C-Pd-S, 46.2(1)°] and the requirement of the six-membered ring [11]. A least-squares plane calculation reveals the planarity of the P₂P₁C₁S₁ core (largest deviation 0.07(1) Å). The Pd-PPh₃ distance, 2.349(2) Å, is significantly longer than the corresponding value

Fig. 2. X-ray structure with atom numbering scheme for complex $\{(Ph_3P)Pd[\mu,\eta^1,\eta^2(MeS_2C)PPh_2]\}_2$, 3, the phenyl groups are omitted for clarity. Selected bond distances (Å) and angles (°) are as follows: Pd-P₁, 2.311(1); Pd-P₂, 2.349(2); Pd-C₁, 2.113(5); Pd-S₁, 2.296(1); C₁-S₁, 1.739(5); C₁-S₂, 1.793(5); C₂-S₂, 1.788(6); P₂-Pd-P₁, 108.16(5); P₂-Pd-S₁, 100.67(5); S₁-Pd-C₁, 46.2(1); C₁-Pd-P₁, 116.1(2); Pd-C₁-S₁, 72.5(2); Pd-S₁-C₁, 61.3(2); Pd-P₁-C₁, 116.9(2).

of 2.267(2) Å found in PdCl(CH₂SMe)(PPh₃)₂, [2(h)] possibly because of the influence of the C=S coordination. The dissociation of the phosphine ligand from W may be caused by labilization of the P–W bond caused by the C=S π -coordination to Pd. Chemical reactivities of the (dithiomethoxycarbonyl)-phosphine metal complexes are currently under investigation.

Acknowledgment

We thank the National Science Council of Taiwan for support.

References and notes

- 1 M.C. Baird and G. Wilkinson, J. Chem. Soc. (A) (1967) 865.
- 2 (a) R. Mason and A.I.M. Rae, J. Chem. Soc. (A) (1970) 1767; (b)
 H. Werner, K. Leonhard and C. Burschka, J. Organomet. Chem., 160 (1978) 291; (c) H.L. Bozec, P.H. Dixneuf, A.J. Carty, and J.N. Taylor, Inorg. Chem., 17 (1978) 2568; (d) G. Fachinetti, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc. Dalton (1979) 1612; (e) M.G. Mason, P.N. Swepston and J.A. Ibers, Inorg. Chem., 22 (1983) 411; (f) S.W. Carr, R. Colton and D. Dakternieks, Inorg. Chem., 23 (1984) 720; (g) J.A. Ibers, Chem. Soc. Rev., 11 (1982) 57; (h) K. Miki, Y. Kai, N. Yasuoka and N. Kasai, J. Organomet. Chem., 135 (1977) 53.
- 3 (a) T.G. Southern, U. Oehmichen, J.Y. Le Marouille, H. Le Bozec, D. Grandjean and P.H. Dixneuf, *Inorg. Chem.*, 19 (1980) 2976; (b) C. Bianchini, C. Mealli, A. Meli, A. Orlandini and L. Sacconi, *Inorg. Chem.*, 19 (1980) 2968; (c) T.S. Cameron, P.A. Gardner and K.R. Grundy, J. Organomet. Chem., 212 (1981) C19; (d) J.G. Brennan, R.A. Andersen and A. Zalkin, *Inorg. Chem.*, 25 (1986) 1756.
- 4 (a) R.C. George, J.C. Terrence, M.J. Suzanne, R.R. Warren and G.T. Keith, J. Chem. Soc. Chem. Commun. (1976) 475; (b) S.M. Boniface and G.R. Clark, J. Organomet. Chem., 188 (1980) 263; (c) C. Bianchini, P. Innocenti, A. Meli, A. Orlandini and A. Scapacci, J. Organomet. Chem., 233 (1982) 233; (d) T.R. Gaffney and J.A. Ibers, Inorg. Chem., 21 (1982) 2062; (e) C. Bianchini, A. Meli and A. Orlandini, Inorg. Chem., 2I (1982) 4166; (f) C. Bianchini, C.A. Ghilardi, A. Meli, A. Organdini and G. Scapacci, J. Chem. Soc., Dalton Trans. (1983) 1969; (g) D.M. Baird, P.E. Fanwick and T. Barwick, Inorg. Chem., 24 (1985) 3753; (h) R. Uson, A. Laguna, M. Laguna and M.L. Castilla, J. Chem. Soc., Dalton Trans. (1987) 3017; (i) E. Hey, M.F. Lappert, J.L. Atwood and S.G. Bott, J. Chem. Soc., Chem. Commun. (1987) 421; (j) D. Miguel and V. Riera, J. Organomet. Chem., 412 (1991) 127; (k) D. Miguel, J.A. Perez-Martinez and V. Riera, J. Organomet. Chem., 420 (1991) C12; (1) B. Alvarez, D. Miguel and V. Riera, Organometallics, 10 (1991) 384; (m) B. Alvarez, S. Garcia-Granda, Y. Jeannin, D. Miguel, J.A. Miguel and V. Riera, Organometallics. 10 (1991) 3005; (n) F.R. Kreissl, N. Ullrich, A Wirsing and U. Thewalt, Organometallics, 10 (1991) 3275; (o) A. Galindo, E. Gutierrez-Puebla, A. Monge, M.A. Munoz, A. Pastor, C. Ruiz and E. Carmona, J. Chem. Soc., Dalton Trans. (1992) 2307; (p) D. Miguel, J.A. Perez-Martinez and V. Riera, Organometallics, 12 (1993) 1394.
- 5 K.-H. Yih, Y.-C. Lin, M.-C. Cheng, Y. Wang, J. Chem. Soc., Chem. Commun., (1993) 1380.
- 6 Spectroscopic data for 1: IR (KBr, ν_{CO}); 2071(m), 1988(s), 1957(sh), 1911(vs) cm⁻¹. ³¹P NMR (81 MHz, δ): 64.26 (t, ¹J_{W-P})

= 247.95 Hz). ¹H NMR (200 MHz, δ): 2.71 (s, 3H, CH₃); 7.50 (m, 6H, Ph); 7.66 (m, 4H, Ph). ¹³C NMR (50 MHz, δ): 21.86 (CH₃); 129.62 (d, meta-C of Ph, ${}^{3}J_{P-C} = 9.72$ Hz); 132.28 (s, para-C of Ph); 134.63 (d, ortho-C of Ph, ${}^{2}J_{P-C} = 12.2$ Hz); 134.88 (d, ipso-C of Ph, ${}^{1}J_{P-C} = 36.6$ Hz); 198.04 (d, ${}^{2}J_{P-C} = 7.5$ Hz, CO), 200.01 (d, ${}^{2}J_{P-C} = 25.0$ Hz, CS₂), 240.28 (d, ${}^{2}J_{P-C} = 7.4$ Hz, CO). MS: 600.7 [M⁺]; 571 [M⁺-CO]; 543.6 [M⁺-2CO]; 515.6 [M⁺-3CO]; 487 [M⁺-4CO]; 459.7 [M⁺-5CO]; 444.7 [M⁺-5CO-CH₃]; 368.9 [M⁺-5CO-CH₃-CS₂].

- 7 Spectroscopic data for 2: IR (KBr, ν_{CO}): 2060(m), 1914(vs), 1887(s) cm⁻¹. ³¹P NMR (81 MHz, CDCl₃): 51.6 (¹J_{W-P} = 257.6 Hz), 22.2, 22.4 (PPh₃). ¹H NMR (200 MHz, δ , CDCl₃): 2.09 (s, 3H, SCH₃), 7.0-7.4 (m, 40H, Ph). ¹³C NMR (50 MHz, δ , CDCl₃): 18.7 (SCH₃), 127-134 (Ph), 198.75 (d, PCS₂Me, ¹J_{P-C} = 6.75 Hz), 208, 214 (s, CO). MS: 1231, [M⁺]; 1217, [M⁺-CH₃].
- 8 Crystal data for 2: $C_{55}H_{43}O_5P_3S_2PdW$, space group $P\overline{1}$; a = 10.920(3), b = 14.707(5), c = 16.654(5) Å; V = 2586.3(14) Å³, Z = 2;

 $\alpha = 99.98(3), \beta = 93.75(3), \gamma = 99.44(3)^\circ; D_c = 1.581 \text{ g cm}^{-3}; \mu = 28.268 \text{ cm}^{-1}; 4772 \text{ observed reflections}; <math>2\theta_{\text{max}} = 45^\circ; R = 0.043, R_w = 0.034; \text{ Mo K}\alpha \text{ radiation}; \lambda = 0.7093 \text{ Å}; T = 298 \text{ K}.$

- 9 Spectroscopic data for 3: ³¹P NMR (81 MHz, δ , CDCl₃): 22.2 (PPh₃), 53.7 (Ph₂PCS₂Me). ¹H NMR (200 MHz, CDCl₃): 2.18 (s, 6H, SCH₃), 7.0-7.4 (m, 50H, Ph). ¹³C NMR (50 MHz, δ , CDCl₃): 19.69 (s, SCH₃), 198.1 (d, PCS₂Me, ¹J_{P-C} = 6.50 Hz), 127-134 (Ph). MS: 1243, [M⁺-SCH₃]; 980, [M⁺-SCH₃-PPh₃].
- 10 Crystal data for 3: $C_{32}H_{28}P_2S_2Pd$, space group P2/c; a = 15.106(3), b = 9.848(3), c = 20.528(4) Å; V = 2951.6(11) Å³, Z = 4; $\beta = 104.854(16)^{\circ}$; $D_c = 1.452$ gcm⁻³; $\mu = 49.539$ cm⁻¹; 2930 observed reflections; $2\theta_{max} = 45^{\circ}$; R = 0.033; $R_w = 0.026$; Mo K α radiation; $\lambda = 0.70930$ Å; T = 298 K.
- 11 (a) C. Bianchini, C.A. Ghilardi, A. Meli, S. Midollini and A. Orlandini, J. Chem. Soc., Chem. Commun. (1983) 753; (b) D.H. Farrar, R.R. Gukathasan and S.A. Morris, Inorg. Chem., 23 (1984) 3258.