Preliminary Communication

Transfer of the (dithiomethyoxycarbonyl)diphenylphosphine ligand from tungsten to palladium: syntheses and crystal structures of two palladium (dithiomethoxycarbonyl)phosphine complexes

Kuang-Hway Yih, Ying-Chih Lin, Ming-Chu Cheng and Yu Wang
Department of Chemistry, National Taiwan University, Taipei, Taiwan 106 (Taiwan)

(Received December 22, 1993; in revised form January 26, 1994)

Abstract

The (dithiomethoxycarbonyl)phosphine transfer reaction between $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{W}(\mathrm{CO})_{s}\left[\mathrm{PPh}_{2}\left(\mathrm{CS}_{2} \mathrm{Me}\right)\right]$, $\mathbf{1}$, forms $\left\{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)\left[\mu, \eta^{1}, \eta^{2}-\right.\right.$ $\left.\left.\left(\mathrm{MeS}_{2} \mathrm{C}\right) \mathrm{PPh}_{2}\right]\right]_{2}, 3$, as the final product. The reaction proceeds via a η^{2}-coordination of the $\mathrm{C}=\mathrm{S}$ fragment to Pd , giving $\left(\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)-\left[\mu, \eta^{1}\right.\right.$, η^{2}-($\left.\left.\left.\mathrm{MeS}_{2} \mathrm{C}\right) \mathrm{PPh}_{2}\right] \mathrm{W}(\mathrm{CO})_{5}\right\}, 2$ as an intermediate. Complexes 2 and 3 are characterized by X -ray diffraction analysis.

Key words: Palladium; Tungsten; Phosphine; X-ray diffraction
Transition metal CS_{2} complexes have attracted considerable attention in recent years. The first preparation of such a complex was reported in 1967 [1]. CS_{2} possesses versatile coordinating capabilities; i.e. it can be a monodentate [2] or a multidentate ligand [3]. Such coordinating ability can be employed in the study of chemical reactivities of the ligands containing CS_{2}. The zwitterionic $\mathrm{R}_{3} \mathrm{P}^{+} \mathrm{CS}_{2}^{-}$ligand is a typical example. Metal complexes containing such a ligand have been extensively studied in recent years [4]. To date, however, little effort has been directed toward investigating the reactivity of the (dithioformato)phosphine ligand, $\mathrm{R}_{2} \mathrm{PCS}_{2}^{-}$. An efficient method of synthesis of metal complexes with the (dithioalkoxycarbonyl)phosphine ligand $\mathrm{Ph}_{2} \mathrm{PCS}_{2} \mathrm{R}$ [5], recently developed by us, allows more extensive exploration of the chemistry of these complexes. This communication describes an intermolecular transfer of the (dithiomethoxycarbonyl)phosphine ligand from W to Pd via a prior coordina-

[^0]tion of $\mathrm{C}=\mathrm{S}$ to the Pd . X-ray crystal structure determination of the two Pd complexes clarifies the transfer mechanism.

Treatment of $\mathrm{W}(\mathrm{CO})_{5}\left[\mathrm{PPh}_{2}\left(\mathrm{CS}_{2} \mathrm{Me}\right)\right]$, $1\left[6^{*}\right]$, with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in ether affords a yellow crystalline product, identified as $\left\{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mu, \eta^{1}, \eta^{2}-\left(\mathrm{MeS}_{2} \mathrm{C}\right) \mathrm{PPh}_{2}\right]-\right.$ $\mathrm{W}(\mathrm{CO})_{s}$, 2, in 55% yield and a small amount of trans-W $(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)_{2}$. The spectroscopic $\left[7^{*}\right]$ and analytical data of 2 correlate with the formulation. The FAB mass spectrum of 2 shows a parent peak at $m / e=1231$. The IR spectrum of 2 shows three terminal carbonyl stretches at 2060,1914 and $1887 \mathrm{~cm}^{-1}$; a typical pattern of a $\mathrm{M}(\mathrm{CO})_{5} \mathrm{~L}$ unit in octahedral geometry. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ exhibits a singlet at δ 2.09 assignable to the thiomethoxy protons and the corresponding ${ }^{13} \mathrm{C}$ NMR signal is at $\delta 18.7$. The ${ }^{31} \mathrm{P}$ NMR spectrum of 2 exhibits a resonance at $\delta 51.6$ with a tungsten satellite (${ }^{1} J_{\mathrm{P}-\mathrm{w}}=257 \mathrm{~Hz}$) assignable to the $\mathrm{PPh}_{2}\left(\mathrm{CS}_{2} \mathrm{Me}\right)$ ligand on W and two more resonances at $\delta 22.2$ and 22.4 assignable to the two inequivalent PPh_{3} ligands. Results indicate an asymmetrical coordination of the $\mathrm{C}=\mathrm{S}$ moiety of the $\mathrm{PPh}_{2}\left(\mathrm{CS}_{2} \mathrm{Me}\right)$ ligand onto the Pd metal. This unusual bonding mode for the $\mathrm{PPh}_{2}{ }^{-}$ $\left(\mathrm{CS}_{2} \mathrm{Me}\right)$ ligand is confirmed by an X-ray diffraction study [8*]. The structure of $\mathbf{2}$ is shown in Fig. 1. It is clear that the pailadium and tungsten metal centers are bridged by the $\mathrm{PPh}_{2}\left(\mathrm{CS}_{2} \mathrm{Me}\right)$ ligand with no metalmetal contact. The ligand is π-bonded through the $\mathrm{C}=\mathrm{S}$ coordination to Pd and σ-bonded to W through the phosphorus atom.

At room temperature complex 2 is unstable and slowly undergoes disproportionation in CHCl_{3} to form a complex $\left.\left\{\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)}\right)\left[\mu, \eta^{1}, \eta^{2}-\left(\mathrm{MeS}_{2} \mathrm{C}\right) \mathrm{PPh}_{2}\right]\right\}_{2}, \mathbf{3}$, in 31% isolated yield, and $\mathrm{W}(\mathrm{CO})_{5} \mathrm{PPh}_{3}$, in 40% yield, which are identified by spectroscopic methods including mass spectroscopy [9^{*}]. The FAB mass spectrum of 3 shows a peak at $m / e=1242.8$ which corresponds to a fragment formed from cleavage of the SMe group from 3. The ${ }^{1} H$ NMR spectrum of 3 exhibits a singlet at $\delta 2.18$ assignable to the thiomethoxy protons and the corresponding ${ }^{13} \mathrm{C}$ NMR signal is at δ 19.7. Thc ${ }^{31} \mathrm{P}$ NMR spectrum of 3 exhibit resonances at $\delta 22.4$ and 53.7. Complex 3 is also identified on the basis of its

[^1]

Fig. 1. X-ray structure with atom numbering scheme for complex $\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\left[\mu, \boldsymbol{\eta}^{1}, \boldsymbol{\eta}^{2}-\left(\mathrm{MeS}_{2} \mathrm{C}\right) \mathrm{PPh}_{2}\right] \mathrm{W}(\mathrm{CO})_{5}\right\}$, 2, the phenyl groups are omitted for clarity. Selected bond distances ((\AA) and angles $\left({ }^{\circ}\right)$ are as follows: $\mathbf{P d}-\mathbf{P}_{1}, 2.321(3) ; \mathbf{P d}-\mathbf{P}_{2}, 2.360(3) ; \mathbf{P d}-\mathrm{C}_{6}, 2.134(9) ; \mathbf{P d}-\mathbf{S}_{1}$, $2.273(3) ; \mathrm{C}_{6}-\mathrm{S}_{1}, 1.720(9) ; \mathrm{C}_{6}-\mathrm{S}_{2}, 1.793(9) ; \mathrm{C}_{7}-\mathrm{S}_{2}, 1.74(1) ; \mathrm{P}_{2}-\mathrm{Pd}-$ $\mathrm{P}_{\mathrm{I}}, 105.8(1) ; \mathrm{S}_{1}-\mathrm{Pd}-\mathrm{C}_{6}, 45.8(2) ; \mathrm{C}_{6}-\mathrm{Pd}-\mathrm{P}_{1}, 110.1(2)$.
single crystal X-ray diffraction analysis [10*]. The ortep drawing of $\mathbf{3}$ is shown in Fig. 2. It is clear that the two $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)$ fragments are held together by the two $\mathrm{PPh}_{2}\left(\mathrm{CS}_{2} \mathrm{Me}\right)$ ligands. The $\mathrm{PPh}_{2}\left(\mathrm{CS}_{2} \mathrm{Me}\right)$ ligand is π bonded to the Pd atom through the $\mathrm{C}=\mathrm{S}$ and σ-bonded to the other Pd atom through the phosphorus atom; this gives a six-membered ring. The coordination around each Pd atom is distorted squared planar, mainly because of the short bite of angle the $\mathrm{C}=\mathrm{S}$ linkage $\left[\mathrm{C}-\mathrm{Pd}-\mathrm{S}, 46.2(1)^{\circ}\right]$ and the requirement of the six-membered ring [11]. A least-squares plane calculation reveals the planarity of the $P_{2} P_{1} C_{1} S_{1}$ core (largest deviation $0.07(1) \AA$). The $\mathrm{Pd}^{2}-\mathrm{PPh}_{3}$ distance, 2.349(2) \AA, is significantly longer than the corresponding value

Fig. 2. X-ray structure with atom numbering scheme for complex $\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Pd}\left[\mu, \eta^{1}, \eta^{2}-\left(\mathrm{MeS}_{2} \mathrm{C}\right) \mathrm{PPh}_{2}\right]_{2}, \mathbf{3}\right.$, the phenyl groups are omitted for clarity. Sclected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ are as follows: Pd- $\mathrm{P}_{1}, 2.311(1) ; \mathrm{Pd}-\mathrm{P}_{2}, 2.349(2) ; \mathrm{Pd}-\mathrm{C}_{1}, 2.113(5) ; \mathrm{Pd}-\mathrm{S}_{\mathrm{t}}$, 2.296(1); $\mathrm{C}_{1}-\mathrm{S}_{1}, 1.739(5) ; \mathrm{C}_{1}-\mathrm{S}_{2}, 1.793(5) ; \mathrm{C}_{2}-\mathrm{S}_{2}, 1.788(6) ; \mathrm{P}_{2}-\mathrm{Pd}-$ $\mathrm{P}_{1}, 108.16(5) ; \mathrm{P}_{2}-\mathrm{Pd}-\mathrm{S}_{1}, 100.67(5) ; \mathrm{S}_{1}-\mathrm{Pd}-\mathrm{C}_{1}, 46.2(1) ; \mathrm{C}_{1}-\mathrm{Pd}-\mathrm{P}_{1}$, 116.1(2); $\mathrm{Pd}-\mathrm{C}_{1}-\mathrm{S}_{1}, 72.5(2) ; \mathrm{Pd}-\mathrm{S}_{1}-\mathrm{C}_{1}, 61.3(2) ; \mathrm{Pd}-\mathrm{P}_{\mathrm{I}}-\mathrm{C}_{1}, 116.9(2)$.
of $2.267(2) \AA$ found in $\mathrm{PdCl}\left(\mathrm{CH}_{2} \mathrm{SMe}\right)\left(\mathrm{PPh}_{3}\right)_{2}$, [2(h)] possibly because of the influence of the $\mathrm{C}=\mathrm{S}$ coordination. The dissociation of the phosphine ligand from W may be caused by labilization of the P-W bond caused by the $\mathrm{C}=\mathrm{S} \pi$-coordination to Pd. Chemical reactivities of the (dithiomethoxycarbonyl)-phosphine metal complexes are currently under investigation.

Acknowledgment

We thank the National Science Council of Taiwan for support.

References and notes

1 M.C. Baird and G. Wilkinson, J. Chem. Soc. (A) (1967) 865.
2 (a) R. Mason and A.I.M. Rae, J. Chem. Soc. (A) (1970) 1767; (b) H. Werner, K. Leonhard and C. Burschka, J. Organomet. Chem., 160 (1978) 291; (c) H.L. Bozec, P.H. Dixneuf, A.J. Carty, and J.N. Taylor, Inorg. Chem., 17 (1978) 2568; (d) G. Fachinetti, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc. Dalton (1979) 1612; (e) M.G. Mason, P.N. Swepston and J.A. Ibers, Inorg. Chem., 22 (1983) 411; (f) S.W. Carr, R. Colton and D. Dakternieks, Inorg. Chem., 23 (1984) 720; (g) J.A. Ibers, Chem. Soc. Rev., 11 (1982) 57; (h) K. Miki, Y. Kai, N. Yasuoka and N. Kasai, J. Organomet. Chem., 135 (1977) 53.
3 (a) T.G. Southern, U. Oehmichen, J.Y. Le Marouille, H. Le Bozec, D. Grandjean and P.H. Dixneuf, Inorg. Chem., 19 (1980) 2976; (b) C. Bianchini, C. Mealli, A. Meli, A. Orlandini and L. Sacconi, Inorg. Chem., 19 (1980) 2968; (c) T.S. Cameron, P.A. Gardner and K.R. Grundy, J. Organomet. Chem., 212 (1981) C19; (d) J.G. Brennan, R.A. Andersen and A. Zalkin, Inorg. Chem., 25 (1986) 1756.

4 (a) R.C. George, J.C. Terrence, M.J. Suzanne, R.R. Warren and G.T. Keith, J. Chem. Soc. Chem. Commun. (1976) 475; (b) S.M. Boniface and G.R. Clark, J. Organomet. Chem., 188 (1980) 263; (c) C. Bianchini, P. Innocenti, A. Meli, A. Orlandini and A. Scapacci, J. Organomet. Chem., 233 (1982) 233; (d) T.R. Gaffney and J.A. Ibers, Inorg. Chem., 21 (1982) 2062; (e) C. Bianchini, A. Meli and A. Orlandini, Inorg. Chem., $2 I$ (1982) 4166; (f) C. Bianchini, C.A. Ghilardi, A. Meli, A. Organdini and G. Scapacci, J. Chem. Soc., Dalton Trans. (1983) 1969; (g) D.M. Baird, P.E. Fanwick and T. Barwick, Inorg. Chem., 24 (1985) 3753; (h) R. Uson, A. Laguna, M. Laguna and M.L. Castilla, J. Chem. Soc., Dalton Trans. (1987) 3017; (i) E. Hey, M.F. Lappert, J.L. Atwood and S.G. Bott, J. Chem. Soc., Chem. Commun. (1987) 421; (j) D. Miguel and V. Riera, J. Organomet. Chem., 412 (1991) 127; (k) D. Miguel, J.A. Perez-Martinez and V. Riera, J. Organomet. Chem., 420 (1991) C12; (1) B. Alvarez, D. Miguel and V. Riera, Organometallics, 10 (1991) 384; (m) B. Alvarez, S. Garcia-Granda, Y. Jeannin, D. Miguel, J.A. Miguel and V. Riera, Organometallics, 10 (1991) 3005; (n) F.R. Kreissl, N. Ullrich, A Wirsing and U. Thewalt, Organometallics, 10 (1991) 3275; (o) A. Galindo, E. Gutierrez-Puebla, A. Monge, M.A. Munoz, A. Pastor, C. Ruiz and E. Carmona, J. Chem. Soc., Dalton Trans. (1992) 2307; (p) D. Miguel, J.A. Perez-Martinez and V. Riera, Organometallics, 12 (1993) 1394.

5 K.-H. Yih, Y.-C. Lin, M.-C. Cheng, Y. Wang, J. Chem. Soc., Chem. Commun., (1993) 1380.
6 Spectroscopic data for 1: IR (KBr, ν_{CO}); 2071(m), 1988(s), 1957(sh), 1911(vs) $\mathrm{cm}^{-1} .{ }^{31} \mathrm{P}$ NMR ($81 \mathrm{MHz}, \delta$): $64.26\left(\mathrm{t},{ }^{1} J_{\mathrm{W}-\mathrm{P}}\right.$
$=247.95 \mathrm{~Hz}) .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \delta$): $2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 7.50$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{Ph}$); 7.66 (m, $4 \mathrm{H}, \mathrm{Ph}$). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \delta$): 21.86 $\left(\mathrm{CH}_{3}\right) ; 129.62$ (d, meta-C of $\mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=9.72 \mathrm{~Hz}$); 132.28 (s , para-C of Ph); 134.63 (d, ortho-C of $\mathrm{Ph},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=12.2 \mathrm{~Hz}$); 134.88 (d, ipso-C of Ph, ${ }^{1} J_{\mathrm{P}-\mathrm{C}}=36.6 \mathrm{~Hz}$); 198.04 (d, ${ }^{2} J_{\mathrm{P}-\mathrm{C}}=7.5 \mathrm{~Hz}$, CO), $200.01\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=25.0 \mathrm{~Hz}, \mathrm{CS}_{2}\right), 240.28\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=7.4 \mathrm{~Hz}\right.$, CO). MS: $600.7\left[\mathrm{M}^{+}\right.$]; $571\left[\mathrm{M}^{+}\right.$-CO]; $543.6\left[\mathrm{M}^{+}-2 \mathrm{CO}\right] ; 515.6$
 $\left.\mathrm{CH}_{3}\right] ; 368.9\left[\mathrm{M}^{+}-5 \mathrm{CO}-\mathrm{CH}_{3}-\mathrm{CS}_{2}\right]$.
7 Spectroscopic data for 2: IR (KBr, ν_{CO}): 2060(m), 1914(vs), $1887(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{31} \mathrm{P}$ NMR ($\left.81 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 51.6\left({ }^{1} J_{\mathrm{W}-\mathrm{P}}=257.6\right.$ Hz), 22.2, $22.4\left(\mathrm{PPh}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \delta, \mathrm{CDCl}_{3}$): 2.09 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{SCH} \mathrm{H}_{3}\right), \quad 7.0-7.4(\mathrm{~m}, 40 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $(50$ $\mathrm{MHz}, \delta, \mathrm{CDCl}_{3}$): $18.7\left(\mathrm{SCH}_{3}\right), \quad 127-134$ (Ph), 198.75 $\left(\mathrm{d}, \mathrm{PCS}_{2} \mathrm{Me},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=6.75 \mathrm{~Hz}\right), 208,214$ (s, CO). MS: $1231,\left[\mathrm{M}^{+}\right]$; $1217,\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right]$.
8 Crystal data for 2: $\mathrm{C}_{55} \mathrm{H}_{43} \mathrm{O}_{5} \mathrm{P}_{3} \mathrm{~S}_{2} \mathrm{PdW}$, space group $P \overline{1} ; a=$ $10.920(3), b=14.707(5), c=16.654(5) \mathrm{A} ; V=2586.3(14) \mathrm{A}^{3}, Z=2$;
$\alpha=99.98(3), \beta=93.75(3), \gamma=99.44(3)^{\circ} ; D_{\mathrm{c}}=1.581 \mathrm{~g} \mathrm{~cm}^{-3} ; \mu=$ $28.268 \mathrm{~cm}^{-1} ; 4772$ observed reflections; $2 \theta_{\text {max }}=45^{\circ} ; R=0.043$, $R_{w}=0.034 ;$ Mo $\mathrm{K} \alpha$ radiation; $\lambda=0.7093 \AA$ A $; T=298 \mathrm{~K}$.
9 Spectroscopic data for 3: ${ }^{31} \mathrm{P}$ NMR ($81 \mathrm{MHz}, \delta, \mathrm{CDCl}_{3}$): 22.2 $\left(\mathrm{PPh}_{3}\right), 53.7\left(\mathrm{Ph}_{2} \mathrm{PCS}_{2} \mathrm{Me}\right) .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.18 $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{SC} \mathrm{H}_{3}\right), 7.0-7.4(\mathrm{~m}, 50 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ (50 $\left.\mathrm{MHz}, \delta, \mathrm{CDCl}_{3}\right): 19.69\left(\mathrm{~s}, \mathrm{SCH}_{3}\right), 198.1\left(\mathrm{~d}, \mathrm{PCS}_{2} \mathrm{Me},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=\right.$ $6.50 \mathrm{~Hz}), 127-134(\mathrm{Ph}) . \mathrm{MS}: 1243,\left[\mathrm{M}^{+}-\mathrm{SCH}_{3}\right] ; 980,\left[\mathrm{M}^{+}-\mathrm{SCH}_{3}{ }^{-}\right.$ PPh_{3}.
10 Crystal data for 3: $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{Pd}$, space group $P 2 / \mathrm{c} ; a=$ 15.106(3), $b=9.848(3), c=20.528(4) \AA ; V=2951.6(11) \AA^{3}, Z=4$; $\beta=104.854(16)^{\circ} ; D_{\mathrm{c}}=1.452 \mathrm{gcm}^{-3} ; \mu=49.539 \mathrm{~cm}^{-1} ; 2930$ observed reflections; $2 \theta_{\text {max }}=45^{\circ} ; R=0.033 ; R_{w}=0.026$; Mo Ka radiation; $\lambda=0.70930 \mathrm{~A} ; T=298 \mathrm{~K}$.
11 (a) C. Bianchini, C.A. Ghilardi, A. Meli, S. Midollini and A. Orlandini, J. Chem. Soc., Chem. Commun. (1983) 753; (b) D.H. Farrar, R.R. Gukathasan and S.A. Morris, Inorg. Chem., 23 (1984) 3258.

[^0]: Correspondence to: Dr. Y.-C. Lin.

[^1]: * Reference number with asterisk indicates a note in the list of references.

